

International Advanced Research Journal in Science, Engineering and Technology ISO 3297:2007 Certified

IARJSET

Vol. 3, Issue 7, July 2016

Assessment of Vehicular Air Pollution in Kota City, Rajasthan

Dr. Mahendra Pratap Choudhary¹, Himanshu Gupta²

Associate Professor, Department of Civil Engineering, Rajasthan Technical University, Kota, India¹

Post Graduate Scholar, Department of Civil Engineering, Rajasthan Technical University, Kota, India²

Abstract: Vehicle emissions are responsible for about two third of air pollution in urban areas. The main pollutants emitted by vehicles include carbon monoxide, oxides of nitrogen and sulphur, hydrocarbon, lead, ozone and suspended particulate matter. These pollutants have harmful effects on human health & ecology. Poor air quality increases respiratory disorders like asthma & bronchitis and increases the risk of life-threatening diseases like cancer. In India, the impact of pollution from vehicles is increasing day by day due to rapid increase in population and modernization. Impact of vehicular pollution is more in cities due to urbanization. Kota is one of the fastest developing cities of Rajasthan having more than 65,0000 registered vehicles that shows large number of vehicles and associated impacts of emission through vehicles on polluting air. To study the vehicular pollution in Kota city, high volume air sampler is used for monitoring the air parameters in terms of SPM, SO_2 and NO_X and these measured parameters have been compared with the national ambient air quality standards issued by the Central Pollution Control Board of India.

Keywords: Air Pollution, Urbanization, Suspended Particulate Matter, Sulphur dioxide, Oxides of Nitrogen.

I. INTRODUCTION

II. STUDY AREA

Most of the Indian Cities are experiencing rapid Kota is a city located in the south east of northern India in urbanization and the majority of the people are expected to Rajasthan state. It is located at around 250 kilometres from be living in cities within a period of next two decades. The Jaipur, the capital of Rajasthan. Kota city is situated on the rapid urbanization in India has also resulted in a tremendous increase in the number of motor vehicles. Number of vehicles has doubled in some cities of India in the last decade. Top six cities in India with highest vehicle India. Kota is the fourth city in Rajasthan having highest population are Delhi, Chennai, Hyderabad, Pune, Mumbai and Kolkata. At global level, the major consumption of oil is in transport sector that shows that vehicles are the only major source of air pollution and India is also suffering from vehicle related pollution problems.

The quality of air has become very poor in India. The cause of high emissions in Kota is vehicles and industries along with conditions like inversions and stagnation which is restricting the dispersion of pollutants into the atmosphere. The sources of pollutants are combustion of fossil fuels in motor vehicles, industrial processes and high dust levels due to unpaved roads and long-range transport from surrounding barren landscapes. The growth of vehicles in India is a major concern to increase the vehicular emission and deterioration of air through pollutants released by these vehicles.

Vehicle emissions are responsible for about two third of air pollution in urban areas. The main pollutants emitted by vehicles include carbon monoxide, oxides of nitrogen and sulphur, hydrocarbon, lead, ozone and suspended particulate matter. These pollutants have harmful effects on human health and ecology. Poor air quality increases respiratory disorders like asthma and bronchitis and increases the risk of life-threatening diseases like cancer.

banks of the Chambal River, the longest river of Rajasthan. It is the third most populated city of Rajasthan after Jaipur and Jodhpur and 46th most populated city of number of registered vehicles after Jaipur, Jodhpur and Udaipur.

Kota is a rapidly developing city with respect to demography, migration, transportation, development in industrial and education sectors for the last two decades. The intensity, quantity, and frequency of both urban and suburban as well as the to and fro movement with other cities are the factors responsible for increasing transportation problems in Kota. The dependency of population on transportation systems is quite high. Kota is one of the cities having around 6.5 lakh registered vehicles apart from other vehicles of neighbouring cities and towns.

The following ten major roads of Kota were selected for the study purpose: Rawatbhata road, Chambal Garden road, C.A.D. road, Mahaveer Nagar road, Jhalawar road, Bhamashah Mandi road, Gumanpura (Kotri) road, D.C.M. road, Kishore Sagar Talav road and Nayapura road.

III. STATUS OF VEHICULAR POLLUTION IN КОТА

Kota is well connected with neighbouring districts and major cities outside the state through National and State highways such as National highway No.12 (Jaipur to

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 7, July 2016

Kota and State Highway (Kota to Lalsot). National results. Monitoring was carried out from the month of Highway No.76 is a part of East-West Corridor. The total August to November 2015. The duration for monitoring road length in Kota is 2052 km and this large road length was kept as 8-Hours. Pollutants analysed from onsite proves the importance to study vehicular pollution in Kota monitoring were SPM, SO₂ and NO_x. The following and as such there is an urgent need to address the graphs show the results obtained. interrelated problems and obstacles experienced by the public of Kota regarding air pollution through vehicles.

The vehicles with poor environmental quality continue to grow in multiple ratios. The traffic congestion resulting from transportation contributes even greater to the deteriorating environment in Kota. Congestion problem is mostly seen at Nayapura road, Aerodrome road, Jhalawar road and Gumanpura road. During evening, condition becomes worst at these roads of Kota. In the last decade, increase in average motor vehicles in Rajasthan has gone up by 9.75 percent every year. The tremendous increase of vehicles affect the ambient air quality of Kota and public health quality whether they are pedestrian, commuters or local residents of Kota.

IV. METHODOLOGY

In India, the impact of pollution from vehicles is increasing day by day due to rapid increase in population and modernization. Impact of vehicle pollution is more in cities due to urbanization. Kota is the fastest developing city of Rajasthan having more than 6.5 lakh registered vehicles that shows large number of vehicles and associated impacts of emission through vehicles on the environment.

To study the vehicular pollution in Kota, a high volume air sampler was used for monitoring the air quality at ten locations during day and night for a period of 8-hours, along the major roads of Kota and parameters like SPM, SO₂ and NO_X have been worked out as per the standard methods.

FIGURE 1: High Volume Air Sampler used for monitoring air parameters (SPM, SO₂ and NO_X)

V. RESULTS AND DISCUSSION

During the study, monitoring of air along the major roads of Kota city was performed at 10 locations. Observations due to congestion of the area; the dispersion of pollutants

Jabalpur) and National Highway No.76 passing through were taken during day and night to get the most precise

SUSPENDED PARTICULATE MATTER (SPM)

GRAPH 1: Levels of SPM at various locations during day and night time

The GRAPH 1 shows that except Kishore Sagar Talav Road and C.A.D. Road, the concentration of SPM at all other locations tremendously increase from night to day. It clearly indicates the impact of vehicular emissions during day time. At Kishore Sagar, there is a ban on vehicles from 5 p.m. to 11 p.m. and it is also surrounded by the biggest park of Kota which results in very less rise of SPM in day as compared to night while at C.A.D., the major source of SPM is the vehicles during day and at night, the Kota Thermal Power Station (KTPS) situated near C.A.D. Road, releases coal dust and flue gases from its stacks and hence the level of SPM is also high during night.

During nights, the lowest concentration of SPM is at Rawatbhata Road due to very less vehicles on this road as it is the exterior end of Kota city and only the vehicles moving to the Rawatbhata side are responsible for SPM in night, while the highest concentration of SPM is at Nayapura Road in night due to heavy vehicle load on it. This road serves as an entrance road to Kota city connected to National Highways (NH-12 and NH-76) and

International Advanced Research Journal in Science, Engineering and Technology

IARJSET

ISO 3297:2007 Certified

Vol. 3, Issue 7, July 2016

Nayapura.

SULPHUR DIOXIDE (SO₂)

GRAPH 2: Levels of SO₂ at various locations during day and night time

The concentration of SO₂ increases with increase in vehicle density during day, however at five locations; the concentration of SO_2 in night is more than the day or nearly the same. Two locations Jhalawar Road and Bhamashah Mandi Road have more SO₂ in night as the diesel driven vehicles are the main source of pollution during night and due to restriction of heavy vehicles during day time in city, SO₂ concentration during day is less as compared to night at these two locations. Jhalawar Road is exterior to city area; and major source of SO₂ during night is the heavy vehicles.

At Kishore Sagar Talay, the concentration of SO₂ during night is nearly same because it has lots of dispersive area is found at Mahaveer Nagar Road as this area is the due to nearby park and lake along with ban on vehicles educational area of Kota. Most of the coaching students during evening hours. At Bhamashah Mandi Road, live here and they rarely use vehicles during night to move concentration of SO₂ is more in night due to trucks and in this region. The NO_X concentration ranges from 45.73 heavy vehicles moving for loading and unloading of to 6.23µg/m³ during day with highest at Jhalawar Road grains. It also consists of various types of storage godowns and lowest at Mahaveer Nagar Road. and small scale industries such as stone crushing, grading industries, agriculture utility equipment industries, chemical industries etc.

The concentration of SO_2 is within limit as per the heavy and light vehicles but heavy vehicles are more standards having highest concentration of 5µg/m³ during dominating during night.

is not possible that increases the SPM level sharply at night at Jhalawar Road and lowest 0.83µg/m³ at Chambal Garden Road while highest concentration of SO₂ during day is 7.91µg/m³ at Nayapura Road and lowest 1.25µg/m³ at CAD Road.

OXIDES OF NITROGEN (NO_X)

GRAPH 3: Levels of NO_X at various locations during day and night time

Concentration of NO_X is much higher than SO_2 concentration at each location which shows increase in vehicle pollution in Kota city and acts as a major pollutant source of air pollution in Kota with respect to other sources of pollution such as power plant and various types of industries. NO_X is mainly emitted from vehicles and sharp rise in NO_X with respect to SO₂ shows that vehicular emission in Kota is deteriorating air quality of Kota.

The highest concentration of NO_X is found at Jhalawar Road during day and night while the lowest concentration

The NO_X concentration ranges from 37.09 to 5.84µg/m³during night with highest at Jhalawar Road and lowest at C.A.D. Road. Highest concentration of NO_x during day and night at Jhalawar Road is due to both

International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 7, July 2016

TABLE I Summary of Results obtained from Monitoring of Air Quality through High Volume Air Sampler (All parameters are in $\mu g/m^3$)

S. No.	Location	Status	SPM	SO ₂	NO _X
1	Rawatbhata Road	Night	103.36	3.03	7.39
		Day	253.99	1.25	4.07
2	Chambal Garden Road	Night	124.50	0.83	8.46
		Day	539.40	1.25	10.16
3	Mahaveer Nagar Road	Night	131.79	1.33	6.23
		Day	368.51	1.78	16.26
4	Gumanpura Road	Night	125.00	1.25	6.60
		Day	494.09	5.14	18.54
5	C.A.D. Road	Night	464.06	1.25	6.35
		Day	448.00	1.25	5.84
6	Jhalawar Road	Night	392.27	5.0	37.09
		Day	806.25	3.33	45.73
7	Bhamashah Mandi Road	Night	217.30	3.30	11.18
		Day	868.33	2.50	8.38
8	D.C.M. Road	Night	201.12	2.50	25.41
		Day	367.16	2.50	18.04
9	Kishore Sagar Talav Road	Night	257.11	1.67	8.38
		Day	266.66	1.67	6.61
10	Nayapura Road	Night	639.20	2.50	10.16
		Day	902.84	7.91	19.81

TABLE II National Ambient Air Quality Standards (NAAQS) as per the Central Pollution Control Board of India

S. N.	Poll utan	Time Weighte	Concentration in Ambient Air (µg/m ³)			
	Average		Indus trial Area	Residenti al, Rural and other	Sensit ive Area	
				Areas		
1	SPM	Annual	360	140	70	
		24 hours	500	200	100	
2	SO_2	Annual	80	60	15	
		24 hours	120	80	30	
3	NO _X	Annual	80	60	15	
		24 hours	120	80	30	

As per the guidelines issued by the Central Pollution Control Board of India, the 24 hourly/8 hourly values of parameters i.e. SPM, SO₂ and NO_X should be met 98% of [6] the time in a year.

VI. CONCLUSION

An attempt has been made in this study to monitor air quality on major roads of Kota city. Sampling stations were setup at ten locations and monitoring was carried out during day and night for a period of 8-hours with the help of high volume air sampler for three parameters SPM, SO₂ and NO_X. Based on observations, it can be concluded that during day, SPM concentration in Kota city is too high with values ranging from $254\mu g/m^3$ to $903\mu g/m^3$ against the standard limit of 200 μ g/m³ for residential areas; NO_x concentration ranges from $4.07 \mu g/m^3$ to $45.73 \mu g/m^3$ and SO_2 concentration ranges from $1.25\mu g/m^3$ to $7.91\mu g/m^3$. During night, SPM concentration ranges from $103\mu g/m^3$ to $639\mu g/m^3$, NO_X concentration ranges from $6.23\mu g/m^3$ to $37.09 \mu g/m^3$ and SO₂ concentration ranges from $0.83 \mu g/m^3$ to $5\mu g/m^3$. Hence, the high values of SPM, SO2 and NOX indicates that the ambient air quality of Kota is not suitable for the residents and therefore corrective and preventive measures need to be taken at the earliest.

VII. SUGGESTIONS

Looking to increased vehicular pollution across India and Kota and its negative impact on the air quality, following suggestion may help to reduce vehicular air pollution.

- Ban on diesel vehicles of more than 20 years life and implementing strict rule for purchase of new vehicles
- > Car pooling and sharing of taxis by office employees
- Sharing of cycles' scheme in institutes and colleges
- Use of CNG, LNG, LPG, Ethanol, Hybrid electric, Plug-in Hybrid electric, Battery electric, Hydrogen fuel cell, Dual fuel or Flexible fuel techniques
- ➢ Use of catalytic convertor techniques in vehicles as they oxidize CO, HC and NO_X into CO₂ and water
- Driving at steady speed (~80km/hours) emits lowest while driving at higher speed (>110 km/hours) dramatically increase the emission rate
- Growing plants and trees along the road sides may reduce the concentration of pollutants in the air

REFERENCES

- [1] Aditya Kumar and Sushanta Tripathy, "Study of Vehicular Pollution and its Mitigation Measures", 3rd KIIT International Symposium on Advances in Automotive Technologies, At KIIT University, Bhubaneswar, December 2014.
- [2] Angelika Sharma and A. K. Raina, "Assessment of the Status of SPM in Jammu City and Its Control Strategies", IOSR-JESTFT, vol.-7, no.-1, pp.8-12, December 2013.
- [3] Chetana Khandar and Sharda Kosankar, "A Review of Vehicular Pollution in Urban India and Its Effects on Human Health", J. Adv. Lab. Res. Biol., vol.-5, no.-3, pp.54-61, July-2014.
- [4] Dr. Mary Tahir, Dr. Tahir Hussain and Ayele Behaylu, "Transport and Ambience Air Quality in Metro Cities of India", Journal of Poverty, Investment and Development, vol.-13, pp.117-121, 2015.
- [5] Ishfaq Ahmad and Harendra K. Sharma, "Assessment of SO₂ concentration in Ambient Air and its impact on Human health in the city of Gwalior, India", Octa Journal of Environmental Research ,vol.- 2, no.-3, pp.227-238, September 2014.
- Jayshri Kala, Gunwant Sharma, Sudhir Kumar and Satish Pipralia, "Study Of Ambient Air Quality Status On Urban roads using Air

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 7, July 2016

Quality Index - A Case Of Jaipur City (Rajasthan, India)", International Journal of Theoretical & Applied Sciences,vol.-6, no.-1, pp.138-147, 2014.

- [7] Krishna Prasad Ghimire and Shreejan Ram Shrestha, "Estimating Vehicular Emission in Kathmandu Valley, Nepal", International Journal of Environment, vol.-3, no.-4, pp.133-146, November 2014.
- [8] Mahadevappa, "A Study on Air Pollution by Automobiles in Bangalore City" Management Research and Practice, vol.-4, no.-3, pp.25-36, 2012.
- [9] Meher Nigar Neema and Jinat Jahan, "An Innovative Approach to Mitigate Vehicular Emission through Roadside Greeneries: A Case Study on Arterial Roads of Dhaka City", JDAIP, vol.-2, pp.32-39, February 2014.
- [10] Milind R. Giddel Pravin P. Sonawan, "Assessment of Traffic Related Air Pollution and Ambient Air Quality of Metropolitan Cities (Case Study of Pune City)", IOSRJEN, vol.-2, no.-6, pp.1382-1390, June 2012.
- [11] National Ambient Air Quality Status and Trends, CPCB and MoEF-2014.
- [12] Pranav Raghav Sood, "Air Pollution through Vehicular Emissions in Urban India and Preventive Measures", IPCBEE, vol.-33, pp.45-49, 2012.
- [13] R. E. Lamare and S. S. Chaturvedi, "Suspended Particulate Matter in Ambient air of Shillong city, Meghalaya, India", Ind. J. Sci. Res. and Tech., vol.-2, no.-6, pp.37-41, 2014.
- [14] Rao M.N and Rao H.V.N, "Air Pollution" By Tata McGraw Hills Publishing Co. Ltd.
- [15] Rati Sindhwani and Pramila Goyal, "Assessment of Traffic-Generated Gaseous and Particulate Matter emissions And Trends over Delhi (2000–2010)". Atmospheric Pollution Research, vol.-5, pp.438-446, 2014.
- [16] Shinde S. M and Dr. Karjinni V. V, "Impact of Vehicular Growth A Cause for Change in Air Quality of Indian Cities – A Review", International Journal of New Technologies in Science and Engineering, vol. - 2, no. - 2, pp. - 154-164, Aug 2015.
- [17] Shivaji Bhandarkar, "Vehicular Pollution, Their Effect on Human Health and Mitigation Measures", Vehicle Engineering, vol.- 1, no.-2, pp.33-40, June 2013.
- [18] Shrivastava R. K., Saxena Neeta and Gautam Geeta, "Air Pollution due to road transportation in India: A Review on Assessment and Reduction Strategies", J. Environ. Res. Develop., vol.-8, no.-1, pp. 69-77, September 2013.
- [19] Sukla Bhaduri, "Vehicular Growth and Air Quality at Major Traffic Intersection Points in Kolkata City: An Efficient Intervention Strategies", The SIJ, vol.-1, no.-1, pp.19-25, October 2013.
- [20] T.V. Ramachandra and Shwetmala, "Emissions from India's Transport Sector: State wise Synthesis", ELSEVIER, pp. 1-8, July 2009.